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Energy spectrum evolution of a diffuse field in an elastic body caused by weak nonlinearity
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We study the evolution of diffuse elastodynamic spectral energy density under the influence of weak non-
linearity. It is shown that the rate of change of this quantity is given by a convolution of the linear energy at
two frequencies. Quantitative estimates are given for sample aluminum and fused silica blocks of experimental
interest.
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I. INTRODUCTION We start with the governing equations for the chosen field

Weak nonlinearity is known to cause a redistribution oftYP€ in Sec. II, and develop them into a system of ODE's
elastodynamic spectral energy density. Energy present at oféth quadratic and cubic nonlinear terms describing time
or two base frequencies will migrate, under the influence ofVvolution of the modal amplitudes. In Sec. lll we discuss
nonlinearity, to higher harmonics and to sum and differencétatistical assumptions for the normal frequencies and modes
frequencies. If those sum and difference frequencies origiof the solid. In Sec. IV the nonlinear equations are treated by
nally have little or no energy, their presence can be a sensmeans of regular perturbation theory and averaged to obtain
tive measure of nonlinearity. The method has been shown tthe spectral power transfered into a frequency band. Results
be capable of detecting flaws in otherwise linear-responsadependent of the underlying physical nature of the nonlin-
specimens. It has been applied to crack detedtiigrand to  earity are considered. In Sec. V we specialize to the case of
assessing the quality of adhesive borjds Much of this  an isotropic homogeneous elastic body and an initial field
work has been qualitative, with emphases on how the nongenerated by two transient narrow-band signals centered at
linear effects scale with field amplitude. The geometry isdifferent frequencies. Quantitative estimates for the nonlin-
such, and the fields sufficiently uncontrolled, that attempts t@ar energy transfer into double and combination frequencies
quantify the nonlinearity in absolute terms have not beerare provided and discussed. Conclusions are presented in

feasible. Sec. VL.
In special circumstances, with high amplitude and long
distance plane wave propagation, it is possible to monitor Il. GOVERNING EQUATIONS

harmonic generation, and thereby assess nonlinearity, and do Suppose we have a finite hyperelastic body occupying

so quantitatively. It has been suggested that nonlinear Ra)(/'olumevo in its natural state referenced by coordinatend

leigh wave pfropagation tr_nay Ee abuseful NDE teﬁhnique %aving material density,(x). The strain energy density of
measure surface propertigd. Lamb waves were also sug- the body for a displacement field with a corresponding

gested for this pUrposi]. ' . . Green’'s tensorE;=1/2(u;j+u;;+Ug ;) is described to
As an alternative to plane wave configurations diffuse, . . AR AT
leading orders in strain bj9]

elastodynamic fields might be appropriate for NDE measure-
ments under insufficiently controlled conditions. Diffuse 1 1

fields span a broad range of applications from optics and W= ECijkl(X)EiiElirgDiiklmn(X)EijEklEmn
microwaves to ultrasonicgsee Ref.[5], and references '1 '

therein. Gross properties of a specimen can be evaluated L

from integral field parameter$]. The extension of diffuse * 41F‘jk'm“Pq(X)E” BuBmnEpq + @)
field theory to include nonlinear effects is receiving increas- . .

ing experimenta[7] and theoretica[8] attention. Its appli- WhereC, D, andF are linear, second, and third-order non-

cation to the evaluation of material properties may be a fulinear elastic tensors, respectively. _
ture research focus. Let the body be subjected to external forces and tractions

The purpose of this paper is to describe effects of wealthat stop acting after a certain cutoff timg=0 after which

nonlinearity on the energy spectrum of a diffuse field, as ondhe field in the body freely evolves without dissipation under

of the integral quantities available for experimental measureZero-displacement boundary conditions. According to the
ment. With a view toward eventual application in the contexttiamilton principle, the weak form of the governing equation

of NDE, but with an interest in the general problem, we take/r the field evolution can be written as

elastodynamics in a nonlinear solid as an underlying physical )
system for our diffuse field model. f f (= o}y ;- polijou)dx3dt =0, (2
Vo
whereo is the first Piola-Kirchoff stress tensor. It is related
*Electronic address: akolzine@uiuc.edu to the strain energy densityl) via deformation gradien;;
"Electronic address: r-weaver@uiuc.edu =6;+u;; [9]:
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Tiji (X, U) =dW/d F” . (3) NaE{X,i,j},BE{X/,k,l}yE{X”,m,n}ﬁz{X/”,p,q}
To distinguish the parts of Eq2) responsible for linear 1 , Y ”
and leading-order nonlinear behaviors of the system we ex- = gNiJklmnpq‘s(X = X")8x = Xx")8x = X").

pand the stress tenserin powers off|u| up to third order,
and label the respective linear and nonlinear operatots as Nonlinear terms of the stre¢8) yield directional tensors in
andN. Equation(2) is then written as the above formulas

Nijkimn = Cijin %m* CinkiSm * CjimnSik + Dijgmn -~~~ (7)
J JV [5U|(pou| - Liu) + &Ii'jNiju]dX?’dt: 0. (4) and
0

A complete set of eigenvalues? and their normalized  Nijkimnpg= CiingSikSmp* CinigSimkp + CigniSipSmk + Djimnpadik
eigenfunctionsu” is considered to be known for the linear
9 : + Djnklpqélm + qumnkléip + Dijlnpqémk"' Dijlqmnépk
operator as a solution of
+ Dijanl5pm+ I:ijklmnpq-

Lu"= icijkl up| = - pow?ul’. (5)  Due to the major and minor symmetries of elastic ten€hrs
IX ' D, andF [9] both matricesN can be identified as fully sym-
metric:
For clarity of notation we introduce composite Greek indices
with implied summation upon them: Nagy = Ngay=Nyga,
gaE{x,i,j}haE{x,i,j} - f gij(X)hij(X)dX3, Naﬁy& NBa)f& Nyﬂa& N&,B)’a- (8)
Vo A quantity which we term linear energy stored in a single

modek at timet is
and denote the first partial derivatives of the field as separate

functionsu =y ; j;= dui(x)/ ;. 15 5.
The displacement field allows decomposition upon the E"_E(dk+wkdk)' )
eigenfunctions with time-dependent modal amplitudgs
[10] In the absence of nonlinearity it is equal to the total energy of
a mode, and is constant over time. It can be written in terms
u(x.t) = D dk(t)u!((x). of the complex amplitudeg,:
k
60 = ZJhfof. (10

By employing this representation in E(), and using the
eigenfunctions as a set of test functiofis, we restate the

governing equation as The amplitudes) arise from the action of external forces

and tractions prior to the cutoff timg. They describe evo-
. ) Wi lution of the linear part of the field by means of the modal
dy+ 0t = = 2 N, USH iy amplitudesd”’ that are found as solutions of the linearized
m, version of equatiori6), with matricesN put to zero[11]:
= 2 NogyoUgysthiddh, (6)

m,l,n

d? = ay(t) = Imye™ . (1)

s The energy flow due to nonlineariﬂﬁ =II, is obtained
kim —, |k, | ,/m kKimn _ k. |, /m n k k
Wherepaﬁf”auﬁu*/ anduaﬂvﬁ_uauﬁgvu& All the spemflcs . from the governing equatio6), with modal power input
of particular type of nonlinear behavior are now contained 'nbeing

matricesN,U.
Only symmetrical with respect to the last two indices B Kim Kimn :

parts of matrixN, s, and symmetrical with respect to the last M=~ NaﬁY% U ayde0itn = Naﬁyﬁ%ﬂ Uagysdiditndn.

three indices parts of matriX,, 4,5 survive modal summation ’ v

in Eqg. (6). Without loss of generality we put these matrices (12)

equal to their corresponding symmetrical parts, and writ

them in Greek index notation as St must be noted that the energy quantiy (9) is not con-

served, because it is not a true energy in the nonlinear
case. Analysis of the strain energy density) re-

igi kim
veals that kﬁgdltlonal terms NG, 2m Uy, dkdidmn/ 3
~NagysZminUagyedkdidndn/4 must be added té, to pro-
duce a quantity that is conserved. However, the terms in-

and volve summation upon modal amplitudes other than that of

1
No=ix.i.jig={x" kI y={x",mn} = ENijk|mn5(X —-Xx")d(x = x")
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the mode at hand, and do not allow simple interpretation irdescribing initial field are found to be centered Gaussian ran-
terms of a single mode. Thus they are not used. dom numbers with variance

1 .
IIl. STATISTICAL MODEL () = OvED(wk)<¢kl//n> = Onie(wy) .

We restrict ourselves to a class of systems for which thé’he amplitudesyy relate to the linear energyl0), and give
field excited by external forces and tractions has a fully dif-the smooth functiom(wQ:D(me(kO)/wE) an interpretation
fuse nature. In experiments such fields are practically realas a frequency-normalized spectral energy density. The linear
ized, for example, in an elastic solid of a classically chaoticamplitudesa, (11) form a centered Gaussian ensemble as

shape, and have statistical properties close to or indistinyell. Their pairwise time correlation is calculated as
guishable from those of a field described by a random

Hamiltonian[12,13. The normal modes of the system are D(w{(a(t)ay(7)) = dpe(w)cosay(t—7).  (16)

taken to be centered Gaussian vectors with a certain spatial goih the mean density of states and correlation matrix can
correlation, as was first theoretically conjectufdd], and o cgiculated in  terms of the average Green's

later numerically and experimentally verifigdS]. We as-  fynction  D(w)=20Im[THG(w))]/ and  K(w)
sume that the mean density of states of the normal frequen- . ' -
cies is given by the functioB(w) in the form of Weyl-series 20lm(G(w))/ 7D(w) [16]. For time scales under consider

: tion, in particulart;<t,, the characteristic wavelength of
[12], and frequency-frequency correlations can be neglecte . . : .
) ) : o ; - the frequencies of interest is much smaller than the diameter
Since experimental identification of a particular mode is

) P » of the solid\/1<1. The leading order nonlinear contribution
complicated by the “missing level” effect or modal overlap

we choose to pursue calculation of average spectral densi{hus comes from the bulk rather than near-boundary region
to pu . ge sp SIS the solid. This allows us to neglect effects of the latter, and
rather than individual modal amplitudes. In order not to dis-

tinguish between individual modes at the frequencies of in_approxmate the exact Green's functiGnin the solid by the

. " . Green’s function in an unbounded medi@ri. This approxi-
terest, and thus deal with the average quantities, we limif_ ..~ ~. ~ R . ke
o mation implies thatk has an infinite correlation radius in-
observation time of the systemto be less than the corre-

. . . - herited fromG™, and leads to formal integral divergence in
Spo”d'r?g brgal(Hem;enberg time t=2wD. O_n_ the .ot_her the calculations of the following sections. To mend the prob-
hand, timet is considered larger than transitigballistic)

A . . : lem we consider the scattering of the field inside the solid as
time in the solid(mean time between two successive scatter-

ing events at the boundarjgs=1/c, so that diffuse regime of a_diffuse process with a fr_ee mean path on the ordgr of the
the field is established.andc star;d for characteristic diam- diameted, which now provides a finite correlation radius for
; . —/e\ a—|x=x"|/l i inatifi
eter of and wavespeed in the solid. Putting together the twi!® Mdel(G)=(G )& Pl [17). The ansatz is justified as
bounds yields, <t<t,, a condition that can be experimen- the final results turn out not to depend on the specific choice
tally realized. of the value ofl, as long as it stays much greater than the
In the framework of the adopted statistical model thewavelength.
modesuk of the linear operato(5) are centered Gaussian

random vectors with variance given by V. ENERGY SPECTRUM EVOLUTION

(uik(x)ujn(x’)) = 8K (@, X, X), We assume nonlinear effects to be small and seek solution
of Eq. (6) by utilizing small perturbation theory, and expand-
ing amplitudesd, in orders of magnitudel,=a,+b+(--),
I){vhereak are given by Eq(11). Next order amplitudes,
arise from the presence of nonlinearity, and are determined
solely by the linear field

n\ — ! t H W .
<U§Ug> - 5anaﬂ(wk) (13) bk(t) - _ f dem k(t ) [2 Naﬁyuggyal(T)am(T)
1

0 wk m,l

where(:--) represents ensemble average & a smooth
frequency-dependent correlation matrix. Pairwise correlatio
of the first partial derivatives of the modes

is readily obtained from
+3 Naﬁy(sU‘:Jg”y”aam)am(T)an(r)]
m,,n

!

Kas{x,i,l},BE{x’,j,m}

= PKii (w0, X, X )% X 14 , ) _
i 9% 0% (14) To obtain successive corrections to the average spectral

density of the power flow we expand Ed.2) in a series of
Orthonormality of the modes imposes a normalization conmagnitudes of,:
dition upon the correlation matrix

IT(@y,t) = D(w (L)) = 2 TV (1), (17)
n
3_—
fv Po()Kii(@,x,x)dx>= 1. (15 As mentioned in Sec. II, since the power flow arises from the
0 nonlinear mode coupling, the modal energy of the linear field
From the mode statistics the complex amplitudgs (10) is conservedlI®(w,t)=0. For the assumed statistics of
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the amplitudesa, (16) the first-order correction to the aver-  The power flow expansioil?7) starts withII® as the

age power density is zero as well: leading term. We express the fourth moments of the ampli-
tudesa, as double products of their pairwise correlations
Y (e,,t) = D(wk)|2 N, (UKE @Dy (Dap() = 0. (S}tf;) and obtain the power flow in terms of the energy den-

m

sin wyt

1
+ E E Na,B'vap.n<Ulc(rI,gn'yU5|/T7/>8’(wl)

I,m+

I (wy,t) = D(wk){E NN, (Ukep Usmme (e’ (@)
I,m

Wy

sin(w = ot ot Sin(w+ o+ wmﬁ} } | (19

w— ot oy wt o t wy

X[s’(wm) + 28’((1);()%:”:

m

wheree’(w)=¢(w)/D(w) is the average normalized energy energy initially: e(w)=0. For such frequencies a weak
of a single mode. The modal sum is evaluated as a frequenahange in the energy density dueli¢” is not masked by a
integral with integrand weighed by the mean density of statestrong initial linear field, and is convenient for experimental

. measurement.
D fn:f f(w,)D(wy)dw,. With the simplifications mentioned the power flow ex-
n 0 pression reduces to
We note that matrixN,z,s responsible for the cubic nonlin- @ _m e . , ,
earity does not enter E@18), for its contribution is propor- [T, = Ez D(@)No(w, 0", |0 o))
tional to (a (t)a,(t)a,(t)a,(t))=0. £ 70
The centered Gaussian statistics of the modes allows av- X e(lot o')e(o)do’. (20
erages in the form o{U';';“yU’jﬂr,) to be expressed as triple

The only remaining coupling function is given by contrac-

products of the pairwise correlatio$3). Combining terms tion of the nonlinear and correlation matrices

with the same modal indices we formally writavith no

implied summation on Latin indicgs No(@y, 09, 03) = NaﬁmenK;,,(wl)K};M(wz)K'y,,(ws)- (21)
NaﬁyNV,un<Ul;Ig]'yUI1(/l;Tq> = No(wk,wm, wl) + I\\72((")k!0‘)|)5km We note that
+ No( 0, @) Om + Na( o), o)

No(w,w’,|(1) + (1)'|) = NO((,(),(I)”,|(1) - (‘)”|)w”=w+w' .

+ Ni(wy) § . 1
() Badan (19 The power flow in the form of Eq20) allows a simple
The coupling functionsy are defined later. interpretation: the energy transfered into a given frequemncy
Expression(18) with the factors(19) inserted, though comes from all pairs of frequencies ando” that have the
bulky and cumbersome to analyze, gives the leading term igiven frequency as a combination, i.e., equal to their sum or
the power flow due to a weak nonlinearity. In experimentaldifference: w=|w'+ »"|. The qualitative result is in agree-
practice, however, it is not uncommon to deal with the fieldsment with and could have been expected from an elementary
that have the spectral energy densityarying smoothly on  theory of nonlinear oscillation§l8]. The symmetry of the
frequency scaledw greater than the averaging bandwidth of nonlinear matrix(8) leads to the symmetry dk, with re-
the limited observation timdwt>1. In this case, Eq(18)  spect to any interchange of its arguments. The coupling
simplifies further. All the terms directly proportional to rap- strength of any triad of frequencies is thus independent of the
idly oscillating sine factors yield negligible averages energy transfer direction. Nevertheless, the power itself ex-
. _ hibits an overall trend of the energy to be transfered up the
sin(wyt)/wn = D(wy) O(L/Awt) frequency spectrum, as it is proportional to the density of

and the modal sums involving such factors are evaluated s&ates at the target frequenbyw).

follows: The expressiorn20) implies energy growth that is, &'s
are approximately constant in time, proportional to elapsed
E frsin (o, — 0)t)/(w, = ) = 7D(w) f(w)[ O w) time t. In discrete spectrum systems such behavior is found
n when a triad of frequencies is locked in internal resonance,
+O(L/Awt)], producing secular terms in the solution obtained by regular

perturbation theory. This is the behavior observed in our case
whered is a unit step function. Another simplification arises because of the finite time<ty: since individual modes are
if we pay attention only to the frequencies that carried nonot resolved, any combination frequency produced by the
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TABLE |. Mechanical properties.

po (kg/m® ¢ (m/s) ¢ (m/s) N(GPa u(GPa A(GPa B(GPa C(GP3a

Aluminun? 2720 6100 3090 49.1 26.0 -320 -198 -190
Fused silica 2200 5700 3750 9.60 30.9 -4 o3 27

Alloy D54S, Smithet al. [21].
bDrumheller[22].
“Bechmanret al. [23].

source frequencies in the frequency range of interest is indignaterial properties that characterize nonlinear coupling
tinguishable from at least one of the normal frequencies oktrength between the source and target frequencies. The func-
the system, which hence lies in effective internal resonanctéon is independent of the linear dimensions of the body and

with them. possesses the symmetries according to @ N(w'/ )
=N(w/w")=N(1-w'/w). An analytical expression foN is
V. ESTIMATES FOR ISOTROPIC HOMOGENEOUS available, but too bulky to be presented here. Details of the
ELASTIC SOLID calculations are found in the Appendix.

As a sample distribution of th@inear) energy density we

~ We return to elastodynamic displacement fields and spemke two Gaussian peaks with half-widtho and total ener-
cialize to the case of an elastic body composed of knownyiesE, , centered at frequencies, and w,:

isotropic homogeneous material, the case that holds premium
experimental and theoretical interest. The linear part of the

E.
Green’s function in the unbounded medium yields the corre- elw)= > L—lﬁe_(w_‘"i)zm‘”z. (23
lation matrixK (see the Appendix =12 Wi V2mAw
K (A A 1 The width of the peaks is restricted by conditidmt> 1, as
ij (A%, ) = Me 1/c,3+ 2/0? imposed by applicability requirements for the simplified
power input expressio(20). It is additionally assumed that
1 i iio(k||AX|) N Ejo(kt|AX|) the peaks do not overlafib; - w,| > Aw. The suggested form
c|3 3 of the spectrum closely models the combined spectra of two

1 narrow-band signals that might be used in an experiment. By
- (5.,-/3—A?iAf(j){—?,jz(kﬂAXD adjusting the carrying frequencies the features c~>f nonlinear
G mode coupling can be investigated, and the fornNahea-

1 sured.
- giz(kt|AX|)] } (22 As a parameter suitable for characterization of the nonlin-
t ear energy transfer strength we consider transfer times de-
whereAx=x-x’ is a separation variablaX=Ax/|Ax|, M is  fined as the formal time required for entire mean energy of
total mass of the solidg, and ¢, are the longitudinal and the source peak&3) to be transfered into combination fre-
transverse wavespeeds, respectively, ani the spherical quencies, provided small perturbation theory and &)
Bessel function of orden. The mean density of states for holds:t; ,= Elyzll'[(lz’)z, andty.,=\E E,/T12,. Here T rep-

clamped boundary conditions is calculated in R&8): resents the total power input into frequency band supporting
the resulting peak at the combination frequency. According
D(w) = Mo W[ 1/C] + 2/c%] - s[2 +(g/c)? to the definitiont, 5, t;.5, and'tl_z characterize energy trans-
212 8 fer into double, sum, and difference frequency, respectively.
+ 3(c/c) V[ (c/cy? + 1]+ O(l/c), Calculations yield these times to be
with & being the surface area of the solid. 1 wiwh 1

For the model of nonlinearity at hand appropriate for an tisp=
isotropic solid, described by the five-constant thef2g],
and correlation matriX provided by Eq(22), the coupling

T MCZD(|(1)1 + w2|)1\§0(|w1 + (1)2|,(1)1,(1)2) miiz,

function Ny (21) assumes the form 2 w‘l‘ 5 1
t1,2:_M > N : F (24)
) , ™ c 5 mMCD (201 ) No(2wy 2,01 2 @1 2) M ,
N o) = G g
Y Y Vo As a measure of absolute strength of the linear field we
oo~ choose squares of the Mach numbers,=VE;E,/Mc? and
X 1_3 ;N(“’ [w). Mg ,=E; ,/Mc2 As seen from Eq(24) stronger nonlinear

_ effects (shorter timey require higher Mach numbers, i.e.,
N is a dimensionless function of the frequency ratio andstronger linear fields.
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N t(s)
10 106 | T ~=—r_ = ti
8 | | T e
10* T h
6 ...... t2
4 102 \
- Mye2, My, 2
2 — 1x10° 3x10°°  7x10°%
w' /W . . . .
0.2 0.4 0.6 0.8 1 FIG. 2. Transfer times in aluminum block for fixed,/2m

) ) ) o . . =500 kHz andw,/27=600 kHz.
FIG. 1. Dimensionless coupling function in aluminugtiick

line) and fused silicathin line). provide numerical estimates for transfer tin{@d). For this

For numerical estimates we take an aluminum block and &Urpose we choose the solid to be equivalent in volume and
fused silica block with the mechanical properties listed insurface area to a cube with a side of 7 cm. The typical values
Table |, and choose the transverse wavespeed for each mag-the transition(ballistic) time in the system are of the order
rial as the characteristic one=c,. Due to the inversion sym- 10 us. The carrying frequencies of the two narrow-band sig-
metry we evaluate the coupling functidh for frequency Nals are taken to be,/2m=500 kHz andw,/2m=600 kHz,

range 0< o'/ w<1 only, and plot it in Fig. 1. Inmediately a S° that the breakHeisenbergytime is of the same order as

significant feature of the plot comes into view: the sharpth€ absorption times of 100 ms common to experiment. The

peaks and discontinuities of the coupling function at fre_transfer times are calculated for the aluminum block and

quency ratios of 0.25 and 0.75 for aluminum, and 0.17 arKplotted in_ Fig. 2 as functions of the linear field strength,
0.83 for fused silica. characterized by Mach number.

The feature may be understood by considering nonlinear It _is fea;ible to generate linear diffuse fields with r.m.s.
combinations of plane waves. We recall that from a plané!astic strains corresponding to Mach numbers of ordef 10
wave perspective appropriate in the linitl <1, in addition that yield transfer times of order 18 (see Fig. 2 Thus the

to internal frequency resonance between the source frequefPServation times of the order of the absorption time yield
ciesw’ andw"=|w-w'| and the target frequenay, there is ~ €Nergy densities at combination frequencies sonfetifites

an additional requirement for wave vector resonance. ngez;ker than the source signal energy, i.e., r.m.s. strains of
note that there are two plane wave types in the systeml,cr . These are easily detectable. We also note that the strain
namely, longitudinal and transverse. If the types of the thredatio (combination field to initial flelaills much smalle.r than
waves (at », o', and ") are identical, wave vector reso- unity, so the use of regular perturbation theory is valid for the
nance [k(o")=k(w)+k(w') with [k|=w/c] is always pos- 9iVen time scale. _ _ _

sible, and demands that the three wave vectors are parallel orI_F'na"y' W? calgulateftransfer t;mes In alumlr?un; and ffgse(;j
antiparallel. If the wave type for one of the frequencies isS"ca@ @S & function of source frequency ratio for a fixe

different from the other two, then wave vector resonance iéVIaCh numbexsee Fig. 3 The frequency dependence of the

not always possible; it depends on the frequency ratio. If it ignlinear coupling strength in terms of the transfer times

possible, there will be a nontrivial angle between the waveeveals the frequency dependencé\ofrhe dips in the trans-
vectors. The transition between possibility and impossibilityfer times correspond to the peaks of the coupling function,
occurs at certain special frequency ratios/ o’ and might be used to estimate Poisson’s ratio of the material,
=(1#c/c)/2. At these ratios wave number resonance occur®r as a signature of nonlinearity. We notice that the energy
with parallel or antiparallel wave vectors. The special fre-transfer into near-zero frequencies is inefficient, as mani-
quency ratio depends solely on the Poisson ratio of the mdested by high difference frequency transfer times in the vi-
terial. For nondispersive single wave speed systems, whefinity of w;/w,=1.

C=¢;, the ratios become 0 and 1. In this case the effect is not

; t
observed, as one of the source frequencies needs to be zero (s)

[24]. However, for certain dispersive single wave speed sys- 10°¢ ek
tems the peaks and discontinuities might still be found, if the . 12
dispersion equation of the system is such that the wave num- 10 tiez

ber resonance is possible. It is also worth noting that the
discontinuity position at leading order is independent of the
field strength. Thus field calibration is not required in experi- 103
mental measurements in order to observe this characteristic

feature, for only relative values of are needed. This makes
the method convenient to use in the light of its eventual
application to NDE. FIG. 3. Transfer times in aluminuithick lines and fused silica

In order to see whether the presented theory is applicablghin lines block for varying source frequency ratio, and fixed
for experimental verification and eventual use, we need taw,/27=550 kHz andm;.,=10"°.

01 2 3 4 5 ¢ w/e
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VI. CONCLUSION Dijkimn = ZACDﬁklmn +2C8; 8Omn+ 2B(8iPigmn+ du®s;

jmn
In the present work we have obtained a formula for the + 5mn‘bﬁk|)- (A1)
evolution of the average linear energy spectr(20) of a
weakly nonlinear system. Except for the definition of the The elementary isotropic tensofsare given as follows:
modal linear energ¥, (9), and statistical properties of the 1
normal frequenciesy, and modesi¥ (5), the result has no ‘bﬁm = ~(Skdy + 816,
reference to the physical nature of the dynamic system gov- 2
erned by nonlinear equatioii§). With proper generalization
of the matricesN,U describing the physical nature of the ) 1
nonlinearity it might be applicable beyond the scope of elas-  Pijkimn = §(5ik5jm5|n + 6ik0inim + 81 Sim%n + il Gjn Skm
ticity.
We observe that the energy redistribution occurs for triads + OmOikbin + Emji Snt GinSjkAim * Sin S S -

of frequencies, with one being the sum or difference of th y substituting tensoréAl) into the strain energy definition
other two. The average power input into a narrow frequenc (1), particular form of directional tensol;m (7) is de-

band is found to be a cumulative effect coming from suc L ed
interactions in the initial energy spectrum of the field, and to ' , L . .
be proportional to the convolution of the energies stored at The Green's function in the unbounded medi@f is

two frequencies. Relative weight of the interactions is givencalculated from its spatial Fourier-transfof@b]

by the frequency-dependent coupling functien(21), and is Bip: 8 - pip
calculated as a contraction of the nonlinear and correlation Gipw="5,"15+55 5 b=plpl.
matricesN andK . Gp -o” Gp -

The case of chief experimental interest involving an iso-pjrect integration of the above expression and its subsequent
tropic homogeneous elastic body with nonlinearity given bynormalization(15) yields particular expression for correla-
the five-constant theory and an initial energy spectrum congon matrix K (22). As two of its particular limit cases we
sisting of two narrow-band signals is discussed in detail. Weote, first, the known autocorrelation function for scalar
find that characteristic times for the full energy transfer fromyeimnoitz equationjo(klAx|) [5] obtained by lettingc=c
the source into combination frequencies depend on the ratigct_ Second, the autocorrelation function for purely trans-
of the source frequencies and exhibit characteristic dips anderse field—such as, for example, electromagnetic field
peaks and discontinuities at special frequency ratios correg_ghtained by letting, — .

sponding to wavenumber resonance. The position of the The correlation matrix of the first partial derivatives of the
resonance depends on Poisson’s ratio. We also find that thgydes is derived fronK by means of Eq(14). It is ex-

transfer times are reciprocal to the strength of the initial Sig'pressed in terms of known directional tensbfscharacter-
nal given by the square Qf the gorrespondmg M.ach numbelgiic wave numberk=w/c, and wave speed ratios
The current theory is derived for zero-displacement_ . ’

boundary conditions of a clamped solid, and is impractical

for experimental realization. However, for the frequencies of , 1 1

interest the main contribution to the mixing comes from the Kas{x,i,l}ﬁs{x’,j,m} = Me i 340 3k2

bulk of the solid. Since the near-boundary regions play a ATH

lesser role, the authors believe that the energy spectrum evo- X2 HEE (ypklAX]).
lution for the traction-free elastic solid would exhibit behav- a={0,2,4

ior similar to that discussed here, and thus be accessible for p={lth

experimental verification. (A2)

The sum over longitudinal and transverse wave types is de-

noted asp={l,t}. Directional tensord are defined by the
This work was supported by the National Science Founfollowing expressions:

dation, Grant No. CMS-0201346.
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Hijimn = 58 dmn = Hiin = 2208 Omn* Omdin + Sndjm],
APPENDIX: CORRELATION MATRIX AND COUPLING
FUNCTION FOR ISOTROPIC HOMOGENEOUS
MEDIUM 12) _ > t2) _ 1,

) ) ) ) o Hi(jm% - ‘siijn_ Hi(jm21 - ;Qijmnv
Elastic deformation of an isotropic homogeneous solid is
described by the five-constant theory in terms of the Lamé
constantsh and u, and nonlinear coefficientd, B, and C HOA = D = }Q? o
[20]. According to the theory the linear and second-order jmn ijmn = 7 ijmn - Xijmn:
nonlinear elastic tensors have the form
The quadruple, composite quadruple aftebder directional

Cijla = Ny 8 + 2Dy, momentsQ moments yield zero values when integrated upon
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all spatial directions or contracted upon any two pairs of +o0
indicgs: P y P |2%Z(Q):MQ|1_Q|f Rad3rk
% 0
5” v v, .
Q%:éL_AXiAXJ‘* Xj <;EQZ> (—q|1 Q|Z)]C(Z)d2 (A3)

For a finite correlation radius of the coupling mattjthe
Q”mn an+ 5an” + 5|mQJn 'nQizm + 5ian2m + 5ij§1, integral additionally depends on the target frequeacyhe
dependence turns out to be only significant in the small vi-
cinity of Q=w'/w={0, 1}, elsewhere the contribution being
8 Bt BB + Ondim) = ARAK AR AR small: O(1/kl). We note Fhat for the mentioned ratiGsone
Q= ( m o of the source frequencies’ or |w—w’| must be close to
zero, and the phenomenon is of small practical importance
. . L . from experimental point of view. For these near-zero fre-
The qouplmg function(21) is given by contraptmn of the quencies the wavelength becomes comparable to or greater
directional tensors of the nonlinear mat(ik) with correla- a5 the diameter of the solid. Thus the substitution of the
tion matrices of the first derivative@?2). It is used to find  oyact Green’s functio® by the Green’s function in the un-

the dimensionless function bounded mediunG* is no longer valid, and conditions for
the time scales made in Sec. Ill are not met.
N= E (ypyq%)“ﬂp” MY ' lw), With these limitations in mind we sat/|=0 for practical
abc={0,2,4 calculations, and obtain analytical expression for &B).
pae={lt} As the result of this procedure a singularity of the function
at o'/ w={0, 1} is acquired(not shown in Fig. 1 Disconti-
where constant&l are nuities of the function at the wave number resonances, and
discontinuities of its slope aw/w’=2/(1+¢/c) and 1
HPSE = N LHQJ @) () (.0 -2/(1+¢/c), are fo_und as weII_. We expect_ in practice to
abe ™ Tjkimn™Tparstif Tipjg * Tkrls ©imtnw observe sharp transitions over finite ranges i’ of order
1/kl, at a characteristic frequency ratie/w’ possibly
and the integral is given by shifted by an amoun®(1/kl).
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