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We study the evolution of diffuse elastodynamic spectral energy density under the influence of weak non-
linearity. It is shown that the rate of change of this quantity is given by a convolution of the linear energy at
two frequencies. Quantitative estimates are given for sample aluminum and fused silica blocks of experimental
interest.

DOI: 10.1103/PhysRevE.69.066605 PACS number(s): 43.25.1y, 05.45.Mt, 43.35.1d, 62.30.1d

I. INTRODUCTION

Weak nonlinearity is known to cause a redistribution of
elastodynamic spectral energy density. Energy present at one
or two base frequencies will migrate, under the influence of
nonlinearity, to higher harmonics and to sum and difference
frequencies. If those sum and difference frequencies origi-
nally have little or no energy, their presence can be a sensi-
tive measure of nonlinearity. The method has been shown to
be capable of detecting flaws in otherwise linear-response
specimens. It has been applied to crack detection[1] and to
assessing the quality of adhesive bonds[2]. Much of this
work has been qualitative, with emphases on how the non-
linear effects scale with field amplitude. The geometry is
such, and the fields sufficiently uncontrolled, that attempts to
quantify the nonlinearity in absolute terms have not been
feasible.

In special circumstances, with high amplitude and long
distance plane wave propagation, it is possible to monitor
harmonic generation, and thereby assess nonlinearity, and do
so quantitatively. It has been suggested that nonlinear Ray-
leigh wave propagation may be a useful NDE technique to
measure surface properties[3]. Lamb waves were also sug-
gested for this purpose[4].

As an alternative to plane wave configurations diffuse
elastodynamic fields might be appropriate for NDE measure-
ments under insufficiently controlled conditions. Diffuse
fields span a broad range of applications from optics and
microwaves to ultrasonics(see Ref. [5], and references
therein). Gross properties of a specimen can be evaluated
from integral field parameters[6]. The extension of diffuse
field theory to include nonlinear effects is receiving increas-
ing experimental[7] and theoretical[8] attention. Its appli-
cation to the evaluation of material properties may be a fu-
ture research focus.

The purpose of this paper is to describe effects of weak
nonlinearity on the energy spectrum of a diffuse field, as one
of the integral quantities available for experimental measure-
ment. With a view toward eventual application in the context
of NDE, but with an interest in the general problem, we take
elastodynamics in a nonlinear solid as an underlying physical
system for our diffuse field model.

We start with the governing equations for the chosen field
type in Sec. II, and develop them into a system of ODE’s
with quadratic and cubic nonlinear terms describing time
evolution of the modal amplitudes. In Sec. III we discuss
statistical assumptions for the normal frequencies and modes
of the solid. In Sec. IV the nonlinear equations are treated by
means of regular perturbation theory and averaged to obtain
the spectral power transfered into a frequency band. Results
independent of the underlying physical nature of the nonlin-
earity are considered. In Sec. V we specialize to the case of
an isotropic homogeneous elastic body and an initial field
generated by two transient narrow-band signals centered at
different frequencies. Quantitative estimates for the nonlin-
ear energy transfer into double and combination frequencies
are provided and discussed. Conclusions are presented in
Sec. VI.

II. GOVERNING EQUATIONS

Suppose we have a finite hyperelastic body occupying
volumeV0 in its natural state referenced by coordinatex, and
having material densityr0sxd. The strain energy density of
the body for a displacement fieldu with a corresponding
Green’s tensorEij =1/2sui,j +uj ,i +uk,iuk,jd is described to
leading orders in strain by[9]

W=
1

2!
CijklsxdEijEkl +

1

3!
DijklmnsxdEijEklEmn

+
1

4!
FijklmnpqsxdEijEklEmnEpq + ¯ , s1d

whereC, D, andF are linear, second, and third-order non-
linear elastic tensors, respectively.

Let the body be subjected to external forces and tractions
that stop acting after a certain cutoff timet0=0 after which
the field in the body freely evolves without dissipation under
zero-displacement boundary conditions. According to the
Hamilton principle, the weak form of the governing equation
for the field evolution can be written as

E E
V0

s− s jidui,j − r0üiduiddx3dt = 0, s2d

wheres is the first Piola-Kirchoff stress tensor. It is related
to the strain energy density(1) via deformation gradientFij
=di j +ui,j [9]:
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s jisx,ud = ] W/] Fij . s3d

To distinguish the parts of Eq.(2) responsible for linear
and leading-order nonlinear behaviors of the system we ex-
pand the stress tensors in powers ofiui up to third order,

and label the respective linear and nonlinear operators asL̂
and N̂. Equation(2) is then written as

E E
V0

fduisr0üi − L̂iud + dui,jN̂i jugdx3dt = 0. s4d

A complete set of eigenvaluesvn
2 and their normalized

eigenfunctionsun is considered to be known for the linear
operator as a solution of

L̂iu
n ;

]

] xj
Cijkluk,l

n = − r0vn
2ui

n. s5d

For clarity of notation we introduce composite Greek indices
with implied summation upon them:

ga;hx,i,jjha;hx,i,jj =E
V0

gijsxdhijsxddx3,

and denote the first partial derivatives of the field as separate
functionsua;hx,i,jj=]uisxd /]xj.

The displacement field allows decomposition upon the
eigenfunctions with time-dependent modal amplitudesdk
[10]

uisx,td = o
k

dkstdui
ksxd.

By employing this representation in Eq.(4), and using the
eigenfunctions as a set of test functionsdu, we restate the
governing equation as

d̈k + vk
2dk = − o

m,l
NabgUabg

klm dkdldm

− o
m,l,n

NabgdUabgd
klmn dkdldmdn, s6d

whereUabg
klm =ua

kub
l ug

m andUabgd
klmn =ua

kub
l ug

mud
n. All the specifics

of particular type of nonlinear behavior are now contained in
matricesN,U.

Only symmetrical with respect to the last two indices
parts of matrixNabg and symmetrical with respect to the last
three indices parts of matrixNabgd survive modal summation
in Eq. (6). Without loss of generality we put these matrices
equal to their corresponding symmetrical parts, and write
them in Greek index notation as

Na;hx,i,jjb;hx8,k,ljg;hx9,m,nj =
1

2
Nijklmndsx − x8ddsx − x9d

and

Na;hx,i,jjb;hx8,k,ljg;hx9,m,njd;hx-,p,qj

=
1

6
Nijklmnpqdsx − x8ddsx − x9ddsx − x-d.

Nonlinear terms of the stress(3) yield directional tensors in
the above formulas

Nijklmn = Cijlndkm+ Cjnkldim + Cjlmndik + Dijklmn s7d

and

Nijklmnpq= Cjlnqdikdmp+ Cjnlqdimdkp + Cjqnldipdmk+ Djlmnpqdik

+ Djnklpqdim + Djqmnkldip + Dijlnpqdmk+ Dijlqmndpk

+ Dijqnkldpm+ Fijklmnpq.

Due to the major and minor symmetries of elastic tensorsC,
D, andF [9] both matricesN can be identified as fully sym-
metric:

Nabg = Nbag = Ngba,

Nabgd = Nbagd = Ngbad = Ndbga. s8d

A quantity which we term linear energy stored in a single
modek at time t is

Ek =
1

2
sḋk

2 + vk
2dk

2d. s9d

In the absence of nonlinearity it is equal to the total energy of
a mode, and is constant over time. It can be written in terms
of the complex amplitudesck:

Ek
s0d =

1

2
ucku2vk

2. s10d

The amplitudesck arise from the action of external forces
and tractions prior to the cutoff timet0. They describe evo-
lution of the linear part of the field by means of the modal
amplitudesdk

s0d that are found as solutions of the linearized
version of equation(6), with matricesN put to zero[11]:

dk
s0d ; akstd = Imcke

−ıvkt. s11d

The energy flow due to nonlinearityĖk=Pk is obtained
from the governing equation(6), with modal power input
being

Pk = − Nabgo
m,l

Uabg
klm ḋkdldm − Nabgd o

m,l,n
Uabgd

klmn ḋkdldmdn.

s12d

It must be noted that the energy quantityEk (9) is not con-
served, because it is not a true energy in the nonlinear
case. Analysis of the strain energy density(1) re-
veals that additional terms −Nabgom,lUabg

klm dkdldm/3
−Nabgdom,l,nUabgd

klmn dkdldmdn/4 must be added toEk to pro-
duce a quantity that is conserved. However, the terms in-
volve summation upon modal amplitudes other than that of
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the mode at hand, and do not allow simple interpretation in
terms of a single mode. Thus they are not used.

III. STATISTICAL MODEL

We restrict ourselves to a class of systems for which the
field excited by external forces and tractions has a fully dif-
fuse nature. In experiments such fields are practically real-
ized, for example, in an elastic solid of a classically chaotic
shape, and have statistical properties close to or indistin-
guishable from those of a field described by a random
Hamiltonian [12,13]. The normal modes of the system are
taken to be centered Gaussian vectors with a certain spatial
correlation, as was first theoretically conjectured[14], and
later numerically and experimentally verified[15]. We as-
sume that the mean density of states of the normal frequen-
cies is given by the functionDsvd in the form of Weyl-series
[12], and frequency-frequency correlations can be neglected.

Since experimental identification of a particular mode is
complicated by the “missing level” effect or modal overlap
we choose to pursue calculation of average spectral density
rather than individual modal amplitudes. In order not to dis-
tinguish between individual modes at the frequencies of in-
terest, and thus deal with the average quantities, we limit
observation time of the systemt to be less than the corre-
sponding break(Heisenberg) time tH=2pD. On the other
hand, timet is considered larger than transition(ballistic)
time in the solid(mean time between two successive scatter-
ing events at the boundaries) tl = l /c, so that diffuse regime of
the field is established.l andc stand for characteristic diam-
eter of and wavespeed in the solid. Putting together the two
bounds yieldstl ! t! tH, a condition that can be experimen-
tally realized.

In the framework of the adopted statistical model the
modesuk of the linear operator(5) are centered Gaussian
random vectors with variance given by

kui
ksxduj

nsx8dl = dknKijsvk,x,x8d,

wherek¯l represents ensemble average andK is a smooth
frequency-dependent correlation matrix. Pairwise correlation
of the first partial derivatives of the modes

kua
kub

nl = dknKab8 svkd s13d

is readily obtained from

K
a;hx,i,ljb;hx8,j ,mj
8 = ]2Kijsv,x,x8d/] xl ] xm8 . s14d

Orthonormality of the modes imposes a normalization con-
dition upon the correlation matrix

E
V0

r0sxdKiisv,x,xddx3 = 1. s15d

From the mode statistics the complex amplitudesck

describing initial field are found to be centered Gaussian ran-
dom numbers with variance

kckcnl = 0,
1

2
Dsvkdkck

*cnl = dnk«svkd.

The amplitudesck relate to the linear energy(10), and give
the smooth function«svkd=DsvkdkEk

s0d /vk
2l an interpretation

as a frequency-normalized spectral energy density. The linear
amplitudesak (11) form a centered Gaussian ensemble as
well. Their pairwise time correlation is calculated as

Dsvkdkakstdanstdl = dkn«svkdcosvkst − td. s16d

Both the mean density of states and correlation matrix can
be calculated in terms of the average Green’s
function Dsvd=2vImfTrkGsvdlg /p, and K svd
=2vImkGsvdl /pDsvd [16]. For time scales under consider-
ation, in particulartl ! tH, the characteristic wavelength of
the frequencies of interest is much smaller than the diameter
of the solidl / l !1. The leading order nonlinear contribution
thus comes from the bulk rather than near-boundary region
of the solid. This allows us to neglect effects of the latter, and
approximate the exact Green’s functionG in the solid by the
Green’s function in an unbounded mediumG`. This approxi-
mation implies thatK has an infinite correlation radius in-
herited fromG`, and leads to formal integral divergence in
the calculations of the following sections. To mend the prob-
lem we consider the scattering of the field inside the solid as
a diffuse process with a free mean path on the order of the
diameterl, which now provides a finite correlation radius for
the model:kGl=kG`le−ux−x8u/l [17]. The ansatz is justified as
the final results turn out not to depend on the specific choice
of the value ofl, as long as it stays much greater than the
wavelength.

IV. ENERGY SPECTRUM EVOLUTION

We assume nonlinear effects to be small and seek solution
of Eq. (6) by utilizing small perturbation theory, and expand-
ing amplitudesdk in orders of magnitudedk=ak+bk+s¯d,
where ak are given by Eq.(11). Next order amplitudesbk
arise from the presence of nonlinearity, and are determined
solely by the linear field

bkstd = −E
t0

t

dt
sin vkst − td

vk
Fo

m,l
NabgUabg

klm alstdamstd

+ o
m,l,n

NabgdUabgd
klmn alstdamstdanstdG .

To obtain successive corrections to the average spectral
density of the power flow we expand Eq.(12) in a series of
magnitudes ofak:

Psvk,td ; DsvkdkPkstdl = o
n

Psndsvk,td. s17d

As mentioned in Sec. II, since the power flow arises from the
nonlinear mode coupling, the modal energy of the linear field
(10) is conserved:Ps0dsv ,td=0. For the assumed statistics of
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the amplitudesak (16) the first-order correction to the aver-
age power density is zero as well:

Ps1dsvk,td = Dsvkdo
l,m

NabgkUabg
klm lkȧkstdalstdamstdl = 0.

The power flow expansion(17) starts with Ps2d as the
leading term. We express the fourth moments of the ampli-
tudes ak as double products of their pairwise correlations
(16), and obtain the power flow in terms of the energy den-
sity

Ps2dsvk,td = DsvkdHo
l,m

NabgNnmhkUabg
kll Unmh

kmml«8svmd«8svmd
sin vkt

vk
+

1

2 o
l,m,±

NabgNnmhkUabg
klm Unmh

klm l«8svld

3F«8svmd ± 2«8svkd
vk

vm
GFsinsvk − vl ± vmdt

vk − vl ± vm
+

sinsvk + vl ± vmdt
vk + vl ± vm

GJ , s18d

where«8svd=«svd /Dsvd is the average normalized energy
of a single mode. The modal sum is evaluated as a frequency
integral with integrand weighed by the mean density of states

o
n

fn =E
0

+`

fsvndDsvnddvn.

We note that matrixNabgd responsible for the cubic nonlin-
earity does not enter Eq.(18), for its contribution is propor-
tional to kȧkstdalstdamstdanstdl=0.

The centered Gaussian statistics of the modes allows av-
erages in the form ofkUabg

klm Unmh
pqr l to be expressed as triple

products of the pairwise correlations(13). Combining terms
with the same modal indices we formally write(with no
implied summation on Latin indices)

NabgNnmhkUabg
klm Unmh

klm l = N0svk,vm,vld + N2svk,vlddkm

+ N2svm,vkddlm + N2svl,vmddlk

+ N3svkddkldkm. s19d

The coupling functionsN are defined later.
Expression(18) with the factors(19) inserted, though

bulky and cumbersome to analyze, gives the leading term in
the power flow due to a weak nonlinearity. In experimental
practice, however, it is not uncommon to deal with the fields
that have the spectral energy density« varying smoothly on
frequency scalesDv greater than the averaging bandwidth of
the limited observation timeDvt@1. In this case, Eq.(18)
simplifies further. All the terms directly proportional to rap-
idly oscillating sine factors yield negligible averages

sinsvntd/vn = DsvndOs1/Dvtd

and the modal sums involving such factors are evaluated as
follows:

o
n

fnsinfsvn − vdtg/svn − vd = pDsvdfsvdfusvd

+ Os1/Dvtdg,

whereu is a unit step function. Another simplification arises
if we pay attention only to the frequencies that carried no

energy initially: «svd=0. For such frequencies a weak
change in the energy density due toPs2d is not masked by a
strong initial linear field, and is convenient for experimental
measurement.

With the simplifications mentioned the power flow ex-
pression reduces to

Ps2dsv,td =
p

2o
±
E

0

+`

DsvdN0sv,v8,uv ± v8ud

3 «suv ± v8ud«sv8ddv8. s20d

The only remaining coupling function is given by contrac-
tion of the nonlinear and correlation matrices

N0sv1,v2,v3d = NabgNnmhKan8 sv1dKbm8 sv2dKgh8 sv3d. s21d

We note that

N0sv,v8,uv + v8ud = N0sv,v9,uv − v9udv9=v+v8.

The power flow in the form of Eq.(20) allows a simple
interpretation: the energy transfered into a given frequencyv
comes from all pairs of frequenciesv8 andv9 that have the
given frequency as a combination, i.e., equal to their sum or
difference:v= uv8±v9u. The qualitative result is in agree-
ment with and could have been expected from an elementary
theory of nonlinear oscillations[18]. The symmetry of the
nonlinear matrix(8) leads to the symmetry ofN0 with re-
spect to any interchange of its arguments. The coupling
strength of any triad of frequencies is thus independent of the
energy transfer direction. Nevertheless, the power itself ex-
hibits an overall trend of the energy to be transfered up the
frequency spectrum, as it is proportional to the density of
states at the target frequencyDsvd.

The expression(20) implies energy growth that is, if«’s
are approximately constant in time, proportional to elapsed
time t. In discrete spectrum systems such behavior is found
when a triad of frequencies is locked in internal resonance,
producing secular terms in the solution obtained by regular
perturbation theory. This is the behavior observed in our case
because of the finite timet! tH: since individual modes are
not resolved, any combination frequency produced by the
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source frequencies in the frequency range of interest is indis-
tinguishable from at least one of the normal frequencies of
the system, which hence lies in effective internal resonance
with them.

V. ESTIMATES FOR ISOTROPIC HOMOGENEOUS
ELASTIC SOLID

We return to elastodynamic displacement fields and spe-
cialize to the case of an elastic body composed of known
isotropic homogeneous material, the case that holds premium
experimental and theoretical interest. The linear part of the
Green’s function in the unbounded medium yields the corre-
lation matrixK (see the Appendix):

KijsDx,vd =
1

M
e−uDxu/l 1

1/cl
3 + 2/ct

3

3Hdi j

3
F 1

cl
3 j0skluDxud +

2

ct
3 j0sktuDxudG

− sdi j /3 − Dx̂iDx̂jdF 1

cl
3 j2skluDxud

−
1

ct
3 j2sktuDxudGJ , s22d

whereDx=x−x8 is a separation variable,Dx̂=Dx / uDxu, M is
total mass of the solid,cl and ct are the longitudinal and
transverse wavespeeds, respectively, andjn is the spherical
Bessel function of ordern. The mean density of states for
clamped boundary conditions is calculated in Ref.[19]:

Dsvd =
V0

2p2v2f1/cl
3 + 2/ct

3g −
S0

8pcl
2vf2 + scl/ctd2

+ 3scl/ctd4g/fscl/ctd2 + 1g + Osl/cd,

with S0 being the surface area of the solid.
For the model of nonlinearity at hand appropriate for an

isotropic solid, described by the five-constant theory[20],
and correlation matrixK provided by Eq.(22), the coupling
function N0 (21) assumes the form

N0sv,v8,uv − v8ud =
p

sgl
3 + 2gt

3d3

c

V0M
v3

3U1 −
v8

v
Uv8

v
Ñsv8/vd.

Ñ is a dimensionless function of the frequency ratio and

material properties that characterize nonlinear coupling
strength between the source and target frequencies. The func-
tion is independent of the linear dimensions of the body and

possesses the symmetries according to Eq.(8): Ñsv8 /vd
=Ñsv /v8d=Ñs1−v8 /vd. An analytical expression forÑ is
available, but too bulky to be presented here. Details of the
calculations are found in the Appendix.

As a sample distribution of the(linear) energy density we
take two Gaussian peaks with half-widthDv and total ener-
giesE1,2 centered at frequenciesv1 andv2:

«svd = o
i=h1,2j

Ei

vi
2Î2pDv2

e−sv − vid
2/2Dv2

. s23d

The width of the peaks is restricted by conditionDvt@1, as
imposed by applicability requirements for the simplified
power input expression(20). It is additionally assumed that
the peaks do not overlap:uv1−v2u@Dv. The suggested form
of the spectrum closely models the combined spectra of two
narrow-band signals that might be used in an experiment. By
adjusting the carrying frequencies the features of nonlinear

mode coupling can be investigated, and the form ofÑ mea-
sured.

As a parameter suitable for characterization of the nonlin-
ear energy transfer strength we consider transfer times de-
fined as the formal time required for entire mean energy of
the source peaks(23) to be transfered into combination fre-
quencies, provided small perturbation theory and Eq.(20)
holds: t1,2=E1,2/P1,2

s2d, and t1±2=ÎE1E2/P1±2
s2d . HerePs2d rep-

resents the total power input into frequency band supporting
the resulting peak at the combination frequency. According
to the definitiont1,2, t1+2, andt1−2 characterize energy trans-
fer into double, sum, and difference frequency, respectively.
Calculations yield these times to be

t1±2 =
1

p

v1
2v2

2

Mc2Dsuv1 ± v2udN0suv1 ± v2u,v1,v2d
1

m1±2
2 ,

t1,2=
2

p

v1,2
4

Mc2Ds2v1,2dN0s2v1,2,v1,2,v1,2d
1

m1,2
2 . s24d

As a measure of absolute strength of the linear field we
choose squares of the Mach numbersm1±2

2 =ÎE1E2/Mc2 and
m1,2

2 =E1,2/Mc2. As seen from Eq.(24) stronger nonlinear
effects (shorter times) require higher Mach numbers, i.e.,
stronger linear fields.

TABLE I. Mechanical properties.

r0 skg/m3d cl sm/sd ct sm/sd l sGPad m sGPad A sGPad B sGPad C sGPad

Aluminuma 2720 6100 3090 49.1 26.0 −320 −198 −190

Fused silica 2200b 5700 3750 9.60b 30.9b −44c 93c 27c

aAlloy D54S, Smithet al. [21].
bDrumheller[22].
cBechmannet al. [23].
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For numerical estimates we take an aluminum block and a
fused silica block with the mechanical properties listed in
Table I, and choose the transverse wavespeed for each mate-
rial as the characteristic one:c=ct. Due to the inversion sym-

metry we evaluate the coupling functionÑ for frequency
range 0,v8 /v,1 only, and plot it in Fig. 1. Immediately a
significant feature of the plot comes into view: the sharp
peaks and discontinuities of the coupling function at fre-
quency ratios of 0.25 and 0.75 for aluminum, and 0.17 and
0.83 for fused silica.

The feature may be understood by considering nonlinear
combinations of plane waves. We recall that from a plane
wave perspective appropriate in the limitl / l !1, in addition
to internal frequency resonance between the source frequen-
ciesv8 andv9= uv−v8u and the target frequencyv, there is
an additional requirement for wave vector resonance. We
note that there are two plane wave types in the system,
namely, longitudinal and transverse. If the types of the three
waves (at v, v8, and v9) are identical, wave vector reso-
nance [ksv9d=ksvd+ksv8d with uk u=v /c] is always pos-
sible, and demands that the three wave vectors are parallel or
antiparallel. If the wave type for one of the frequencies is
different from the other two, then wave vector resonance is
not always possible; it depends on the frequency ratio. If it is
possible, there will be a nontrivial angle between the wave
vectors. The transition between possibility and impossibility
occurs at certain special frequency ratiosv /v8
=s1±ct /cld /2. At these ratios wave number resonance occurs
with parallel or antiparallel wave vectors. The special fre-
quency ratio depends solely on the Poisson ratio of the ma-
terial. For nondispersive single wave speed systems, when
cl =ct, the ratios become 0 and 1. In this case the effect is not
observed, as one of the source frequencies needs to be zero
[24]. However, for certain dispersive single wave speed sys-
tems the peaks and discontinuities might still be found, if the
dispersion equation of the system is such that the wave num-
ber resonance is possible. It is also worth noting that the
discontinuity position at leading order is independent of the
field strength. Thus field calibration is not required in experi-
mental measurements in order to observe this characteristic

feature, for only relative values ofÑ are needed. This makes
the method convenient to use in the light of its eventual
application to NDE.

In order to see whether the presented theory is applicable
for experimental verification and eventual use, we need to

provide numerical estimates for transfer times(24). For this
purpose we choose the solid to be equivalent in volume and
surface area to a cube with a side of 7 cm. The typical values
of the transition(ballistic) time in the system are of the order
10 ms. The carrying frequencies of the two narrow-band sig-
nals are taken to bev1/2p=500 kHz andv2/2p=600 kHz,
so that the break(Heisenberg) time is of the same order as
the absorption times of 100 ms common to experiment. The
transfer times are calculated for the aluminum block and
plotted in Fig. 2 as functions of the linear field strength,
characterized by Mach number.

It is feasible to generate linear diffuse fields with r.m.s.
elastic strains corresponding to Mach numbers of order 10−5

that yield transfer times of order 103 s (see Fig. 2). Thus the
observation times of the order of the absorption time yield
energy densities at combination frequencies some 104 times
weaker than the source signal energy, i.e., r.m.s. strains of
10−7. These are easily detectable. We also note that the strain
ratio (combination field to initial field) is much smaller than
unity, so the use of regular perturbation theory is valid for the
given time scale.

Finally, we calculate transfer times in aluminum and fused
silica as a function of source frequency ratio for a fixed
Mach number(see Fig. 3). The frequency dependence of the
nonlinear coupling strength in terms of the transfer times

reveals the frequency dependence ofÑ. The dips in the trans-
fer times correspond to the peaks of the coupling function,
and might be used to estimate Poisson’s ratio of the material,
or as a signature of nonlinearity. We notice that the energy
transfer into near-zero frequencies is inefficient, as mani-
fested by high difference frequency transfer times in the vi-
cinity of v1/v2=1.

FIG. 1. Dimensionless coupling function in aluminum(thick
line) and fused silica(thin line).

FIG. 2. Transfer times in aluminum block for fixedv1/2p
=500 kHz andv2/2p=600 kHz.

FIG. 3. Transfer times in aluminum(thick lines) and fused silica
(thin lines) block for varying source frequency ratio, and fixed
v2/2p=550 kHz andm1±2=10−5.
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VI. CONCLUSION

In the present work we have obtained a formula for the
evolution of the average linear energy spectrum(20) of a
weakly nonlinear system. Except for the definition of the
modal linear energyEk (9), and statistical properties of the
normal frequenciesvk and modesuk (5), the result has no
reference to the physical nature of the dynamic system gov-
erned by nonlinear equations(6). With proper generalization
of the matricesN ,U describing the physical nature of the
nonlinearity it might be applicable beyond the scope of elas-
ticity.

We observe that the energy redistribution occurs for triads
of frequencies, with one being the sum or difference of the
other two. The average power input into a narrow frequency
band is found to be a cumulative effect coming from such
interactions in the initial energy spectrum of the field, and to
be proportional to the convolution of the energies stored at
two frequencies. Relative weight of the interactions is given
by the frequency-dependent coupling functionN0 (21), and is
calculated as a contraction of the nonlinear and correlation
matricesN andK 8.

The case of chief experimental interest involving an iso-
tropic homogeneous elastic body with nonlinearity given by
the five-constant theory and an initial energy spectrum con-
sisting of two narrow-band signals is discussed in detail. We
find that characteristic times for the full energy transfer from
the source into combination frequencies depend on the ratio
of the source frequencies and exhibit characteristic dips and
peaks and discontinuities at special frequency ratios corre-
sponding to wavenumber resonance. The position of the
resonance depends on Poisson’s ratio. We also find that the
transfer times are reciprocal to the strength of the initial sig-
nal given by the square of the corresponding Mach number.

The current theory is derived for zero-displacement
boundary conditions of a clamped solid, and is impractical
for experimental realization. However, for the frequencies of
interest the main contribution to the mixing comes from the
bulk of the solid. Since the near-boundary regions play a
lesser role, the authors believe that the energy spectrum evo-
lution for the traction-free elastic solid would exhibit behav-
ior similar to that discussed here, and thus be accessible for
experimental verification.
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APPENDIX: CORRELATION MATRIX AND COUPLING
FUNCTION FOR ISOTROPIC HOMOGENEOUS

MEDIUM

Elastic deformation of an isotropic homogeneous solid is
described by the five-constant theory in terms of the Lamé
constantsl and m, and nonlinear coefficientsA, B, and C
[20]. According to the theory the linear and second-order
nonlinear elastic tensors have the form

Cijkl = ldi jdkl + 2mFi jkl
1 ,

Dijklmn = 2AFi jklmn
2 + 2Cdi jdkldmn+ 2Bsdi jFklmn

1 + dklFi jmn
1

+ dmnFi jkl
1 d. sA1d

The elementary isotropic tensorsF are given as follows:

Fi jkl
1 =

1

2
sdikd jl + dild jkd,

Fi jklmn
2 =

1

8
sdikd jmdln + dikd jndlm + dild jmdkn + dild jndkm

+ dimd jkdln + dimd jldkn + dind jkdlm + dind jldkmd.

By substituting tensors(A1) into the strain energy definition
(1), particular form of directional tensorsNijklmn (7) is de-
rived.

The Green’s function in the unbounded mediumG` is
calculated from its spatial Fourier-transform[25]

Gij
`sp,vd =

p̂ip̂j

cl
2p2 − v2 +

di j − p̂ip̂j

ct
2p2 − v2, p̂ = p/upu.

Direct integration of the above expression and its subsequent
normalization(15) yields particular expression for correla-
tion matrix K (22). As two of its particular limit cases we
note, first, the known autocorrelation function for scalar
Helmholtz equationj0skuDxud [5] obtained by lettingc=cl

=ct. Second, the autocorrelation function for purely trans-
verse field—such as, for example, electromagnetic field
[26]—obtained by lettingcl →`.

The correlation matrix of the first partial derivatives of the
modes is derived fromK by means of Eq.(14). It is ex-
pressed in terms of known directional tensorsH, character-
istic wave numberk=v /c, and wave speed ratiosgl,t
=c/cl,t:

K
a;hx,i,ljb;hx8,j ,mj
8 =

1

M
e−uDxu/l 1

gl
3 + 2gt

3k2

3 o
a=h0,2,4j
p=hl,tj

gp
5Hijmn

sp,ad jasgpkuDxud.

sA2d

The sum over longitudinal and transverse wave types is de-
noted asp=hl ,tj. Directional tensorsH are defined by the
following expressions:

Hijmn
sl,0d =

1

3
di jdmn− Hijmn

st,0d =
1

15
fdi jdmn+ dimd jn + dind jmg,

Hijmn
sl,2d = di jQmn

2 − Hijmn
st,2d =

1

7
Qijmn

2 ,

Hijmn
sl,4d = − Hijmn

st,4d =
1

7
Qijmn

2 − Qijmn
4 .

The quadruple, composite quadruple and 24-order directional
momentsQ moments yield zero values when integrated upon
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all spatial directions or contracted upon any two pairs of
indices:

Qij
2 =

di j

3
− Dx̂iDx̂j ,

Qijmn
2 = di jQmn

2 + dmnQij
2 + dimQjn

2 + d jnQim
2 + dinQjm

2 + d jmQin
2 ,

Qijmn
4 =

1

15
sdi jdmn+ dimd jn + dind jmd − Dx̂iDx̂jDx̂mDx̂n.

The coupling function(21) is given by contraction of the
directional tensors of the nonlinear matrix(7) with correla-
tion matrices of the first derivatives(A2). It is used to find
the dimensionless function

Ñ = o
a,b,c=h0,2,4j
p,q,r=hl,tj

sgpgqgrd4Habc
pqrIabc

pqrsv8/vd,

where constantsH are

Habc
pqr = NijklmnNpqrstuHipjq

sp,adHkrls
sq,bdHmtnu

sr,cd ,

and the integralI is given by

Iabc
pqrsVd =

gpgq

gr
2 Vu1 − VuE

0

+`

z2e−z/3grk

3 jaSgp

gr

VzD jbSgq

gr
u1 − VuzD jcszddz. sA3d

For a finite correlation radius of the coupling matrixl, the
integral additionally depends on the target frequencyv. The
dependence turns out to be only significant in the small vi-
cinity of V=v8 /v=h0,1j, elsewhere the contribution being
small: Os1/kld. We note that for the mentioned ratiosV one
of the source frequenciesv8 or uv−v8u must be close to
zero, and the phenomenon is of small practical importance
from experimental point of view. For these near-zero fre-
quencies the wavelength becomes comparable to or greater
than the diameter of the solid. Thus the substitution of the
exact Green’s functionG by the Green’s function in the un-
bounded mediumG` is no longer valid, and conditions for
the time scales made in Sec. III are not met.

With these limitations in mind we setl / l =0 for practical
calculations, and obtain analytical expression for Eq.(A3).
As the result of this procedure a singularity of the functionÑ
at v8 /v=h0,1j is acquired(not shown in Fig. 1). Disconti-
nuities of the function at the wave number resonances, and
discontinuities of its slope atv /v8=2/s1+cl /ctd and 1
−2/s1+cl /ctd, are found as well. We expect in practice to
observe sharp transitions over finite ranges inv /v8 of order
1/kl, at a characteristic frequency ratiov /v8 possibly
shifted by an amountOs1/kld.
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